¿Qué es el Ad-hoc Testing?

El ad-hoc testing es un enfoque informal y no planificado donde los testers exploran la aplicación sin casos de prueba predefinidos o documentación formal. A diferencia de métodos estructurados, el ad-hoc testing se basa en la intuición, experiencia y conocimiento del dominio del tester para identificar defectos mediante exploración espontánea.

Características Clave:

  • Sin planificación formal de pruebas o documentación
  • Realizado sin seguir técnicas específicas de diseño de tests
  • Se basa en creatividad y experiencia del tester
  • Se enfoca en romper la aplicación mediante uso no convencional
  • Típicamente ejecutado una vez, no repetido
  • Puede realizarse en cualquier etapa de testing

Propósito: Encontrar defectos que casos de prueba formales podrían perder, especialmente casos edge y escenarios inusuales.

¿Qué es el Monkey Testing?

El monkey testing es una técnica de testing aleatorio donde se proporcionan inputs sin casos de prueba predefinidos, simulando comportamiento aleatorio del usuario. El nombre proviene del “teorema del mono infinito”—dado suficiente tiempo, un mono escribiendo aleatoriamente eventualmente produciría texto significativo.

Características Clave:

  • Acciones completamente aleatorias sin objetivo específico
  • No se requiere conocimiento de funcionalidad de aplicación
  • Puede ser automatizado o realizado manualmente
  • Testea estabilidad de aplicación bajo inputs aleatorios
  • Sin resultados esperados predefinidos
  • Enfoque en crashes, cuelgues o errores inesperados

Propósito: Evaluar robustez de aplicación contra inputs y acciones de usuario aleatorios e impredecibles.

Ad-hoc vs Monkey Testing: Diferencias Clave

AspectoAd-hoc TestingMonkey Testing
EnfoqueInformal pero con propósitoCompletamente aleatorio
Conocimiento del TesterRequiere conocimiento del dominioNo se necesita conocimiento
PlanificaciónPlanificación mínimaCero planificación
ObjetivoEncontrar defectos mediante exploración creativaTestear estabilidad bajo inputs aleatorios
EjecuciónGuiada por intuición del testerAcciones aleatorias
ReproducibilidadDifícil pero posibleExtremadamente difícil
AutomatizaciónRaramente automatizadoFrecuentemente automatizado
CoberturaEnfocada en áreas débiles sospechadasAmplia, cobertura impredecible
DocumentaciónNotas mínimasUsualmente ninguna
Habilidad RequeridaAlta (testers experimentados)Baja (puede ser cualquiera/cualquier cosa)

Tipos de Ad-hoc Testing

1. Buddy Testing

Dos miembros del equipo (típicamente desarrollador + tester) trabajan juntos para testear una feature inmediatamente después del desarrollo.

Beneficios:

  • Feedback instantáneo
  • Corrección inmediata de bugs
  • Compartir conocimiento
  • Reducción de overhead de documentación

2. Pair Testing

Dos testers trabajan juntos—uno ejecuta tests mientras el otro observa y toma notas.

Roles:

  • Driver: Opera la aplicación, realiza acciones
  • Navigator: Observa, sugiere ideas de testing, documenta hallazgos

Tipos de Monkey Testing

1. Dumb Monkey Testing

Acciones completamente aleatorias sin conocimiento de la aplicación.

2. Smart Monkey Testing

Testing aleatorio con algo de conocimiento de la aplicación, evitando acciones completamente inválidas.

3. Brilliant Monkey Testing

Testing altamente inteligente que entiende patrones de usuario, lógica de negocio y contexto de aplicación.

Cuándo Usar Ad-hoc Testing

Escenarios Ideales:

Restricciones de tiempo: Necesita feedback rápido sin preparación formal de casos de prueba

Nuevas features: Exploración inicial de funcionalidad no familiar

Complemento a testing formal: Encontrar defectos que tests estructurados pierden

Después de correcciones de bugs: Verificar correcciones y explorar áreas relacionadas

Antes de testing mayor: Ganar entendimiento antes de escribir casos de prueba formales

Cuándo Usar Monkey Testing

Escenarios Ideales:

Testing de estabilidad: Evaluar robustez de aplicación

Complemento a load testing: Comportamiento aleatorio de usuario bajo carga

Regression testing: Verificar que no hay crashes después de cambios

Testing de app móvil: Simular interacciones impredecibles de usuario

Endurance testing: Tests aleatorios de larga duración para encontrar memory leaks

Mejores Prácticas de Ad-hoc Testing

1. Documenta Tus Hallazgos

Incluso aunque el ad-hoc testing sea informal, documenta:

  • Áreas testeadas
  • Issues encontrados
  • Pasos para reproducir defectos
  • Preguntas levantadas

2. Enfócate en Áreas de Alto Riesgo

Prioriza áreas con:

  • Lógica compleja
  • Cambios recientes
  • Densidad histórica de defectos
  • Alto impacto de negocio

3. Time-box Tus Sesiones

El ad-hoc testing puede ser interminable. Establece límites:

  • Sesiones enfocadas de 30-60 minutos
  • Área o feature específica
  • Objetivos claros

Mejores Prácticas de Monkey Testing

1. Define Objetivos Claros

Incluso el testing aleatorio necesita metas:

  • ¿Testear crashes? ¿Memory leaks? ¿Congelamiento de UI?
  • ¿Qué constituye un fallo?
  • ¿Cuánto tiempo debería durar el testing?

2. Monitorea y Registra

Captura evidencia de issues mediante logging y monitoreo.

3. Usa Aleatoriedad con Semilla

Haz tests reproducibles usando seeds para generadores aleatorios.

4. Combina con Health Checks

Monitorea salud de aplicación durante monkey testing:

  • Uso de CPU
  • Consumo de memoria
  • Tiempos de respuesta
  • Logs de errores
  • Reportes de crashes

Limitaciones y Riesgos

Limitaciones de Ad-hoc Testing

No repetible: Difícil reproducir escenarios exactos de testing

Dependiente de habilidad: Calidad varía según expertise del tester

Sin métricas de cobertura: Difícil medir completitud

Gaps de documentación: Puede no capturar todos los hallazgos

Limitaciones de Monkey Testing

Baja tasa de detección de defectos: La mayoría de acciones aleatorias no tienen sentido

Sin resultados esperados: Difícil determinar si comportamiento es correcto

Ineficiente: Desperdicia tiempo en escenarios improbables

Falsos positivos: Puede reportar issues que no son realmente bugs

Integración con Testing Formal

Workflow Recomendado:

Fase 1: Análisis de Requisitos
→ Crear plan formal de testing

Fase 2: Desarrollo Inicial
→ Ad-hoc testing por desarrolladores (buddy testing)
→ Detección temprana de defectos

Fase 3: Feature Completa
→ Testing con scripts formal
→ Ad-hoc testing para casos edge
→ Monkey testing para estabilidad

Fase 4: Pre-Release
→ Tests de regresión automatizados
→ Monkey testing (ejecuciones nocturnas)
→ Ad-hoc testing de rutas críticas

Fase 5: Producción
→ Monkey testing monitoreado en staging
→ Ad-hoc testing de issues reportados por usuarios

Conclusión

El ad-hoc y monkey testing son complementos valiosos a enfoques estructurados de testing, no reemplazos. Destacan en encontrar issues inesperados que casos de prueba formales pierden, pero deben usarse estratégicamente junto con métodos sistemáticos de testing.

Puntos Clave:

  • Ad-hoc testing: Exploración informal y con propósito por testers experimentados
  • Monkey testing: Acciones aleatorias para testear estabilidad y robustez
  • Ambos enfoques: Complementan testing formal, no lo reemplazan
  • Documenta hallazgos: Incluso testing informal necesita documentación básica
  • Time-box sesiones: Prevenir testing interminable y sin foco
  • El balance es clave: Combina testing caótico con enfoques sistemáticos

Usa ad-hoc testing cuando necesites exploración creativa impulsada por experiencia. Usa monkey testing cuando quieras stress-testear estabilidad con inputs aleatorios. Pero siempre asegura que la mayor parte de tu testing siga enfoques estructurados, repetibles y documentados que proporcionen cobertura medible y confianza en la calidad.